DOMINATION NUMBER OF THE CARTESIAN PRODUCT OF A PATH WITH ANY PAIR OF GRAPHS

Omar Tout
Sultan Qaboos University
e-mail: o.tout@squ.edu.om

For a simple finite graph G, let $V(G)$ denote the set of vertices of G. We say that a vertex $u \in V(G)$ dominates a vertex v if $u=v$ or v is adjacent to u. A dominating set of G, is a subset of vertices of G which dominates all the vertices of G. The domination number of G, denoted $\gamma(G)$, is the size of a smallest dominating set of G. The Cartesian product $X \square Y$ of two graphs X and Y is the graph whose vertex set is $V(X) \times V(Y)$ and edge set defined as follows. Two vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent in $X \square Y$ if either $x_{1}=x_{2}$ and y_{1} and y_{2} are adjacent in Y, or $y_{1}=y_{2}$ and x_{1} and x_{2} are adjacent in X. The still open conjecture of Vizing, see [1], states that $\gamma(X \square Y) \geq \gamma(X) \gamma(Y)$ for any pair of graphs X and Y.

In 2000, Clark and Suen showed in [2] that $\gamma(X \square Y) \geq \frac{1}{2} \gamma(X) \gamma(Y)$ for any pair of graphs X and Y. To this date, $\frac{1}{2}$ remains the best obtained coefficient towards proving Vizing's conjecture. Clark and Suen's result implies that $\gamma(X \square Y \square Z) \geq \frac{1}{4} \gamma(X) \gamma(Y) \gamma(Z)$ for any triple of graphs X, Y and Z. We show that this lower bound can be improved for special graphs. In particular, for any $n \geq 1$, we show that $\gamma\left(X \square Y \square P_{n}\right) \geq c_{n} \gamma(X) \gamma(Y) \gamma\left(P_{n}\right)$ where c_{n} is almost $\frac{3}{4}$ when n is big enough. Our proof can be found in [3]. It uses space projections and follows the new framework to approach Vizing's conjecture which appeared in [4].

References

[1] V. G. Vizing, Some unsolved problems in graph theory, Russian Math. Surveys 23(6) (1968) 125-141.
[2] W. E. Clark and S. Suen, An inequality related to Vizing's conjecture, Electronic Journal of Combinatorics 7 (2000) \# N4.
[3] O. Tout, On the domination number of the cartesian product of the path graph P_{2} and a pair of graphs, arXiv, 2312.09208 (2023). https://arxiv.org/abs/2312.09208
[4] B. Brešar, B. L. Hartnell, M. A. Henning, K. Kuenzel and D. F. Rall, A new framework to approach Vizing's conjecture, Discussiones Mathematicae Graph Theory. 41(3) (2021) 749-762.

