PATH ISOLATION IN GRAPHS

Karl Bartolo, Peter Borg and Dayle Scicluna
University of Malta
e-mail: karl.bartolo.16@um.edu.mt, peter.borg@um.edu.mt, dayle.scicluna.09@um.edu.mt

Given a graph G and a set \mathcal{F} of graphs, the \mathcal{F}-isolation number is the size of a smallest subset D of the vertex set of G such that $G-N[D]$ (the graph obtained from G by removing the closed neighbourhood of D) does not contain a copy of a graph in \mathcal{F}. The path isolation number $\iota\left(G, P_{i}\right)$ for $i>0$ has attracted particular interest among graph theorists. For $i=1$, since $P_{1}=K_{1}$, we have Ore's (1962) result [4] that $\gamma(G)=\iota\left(G, P_{1}\right) \leq \frac{n}{2}$ where $\gamma(G)$ is the domination number of an n-vertex connected graph G. For $i=2$, since $P_{2}=K_{2}$, we have Caro and Hansberg's (2017) result [2] that $\iota\left(G, P_{2}\right) \leq \frac{n}{3}$ provided G is connected but not a 5 -cycle or a 2 -clique. For $i=3$, it was shown by Zhang and Wu [5], and independently and in a stronger form by Borg [1], that $\iota\left(G, P_{3}\right) \leq \frac{2 n}{7}$ unless $G \in\left\{P_{3}, C_{3}, C_{6}\right\}$. This can be improved to $\frac{n}{4}$ if G is not a $\left\{P_{3}, C_{7}, C_{11}\right\}$-graph and the girth is at least 7 . Recently Huang, Zhang and Jin [3] showed that for a connected graph G that has no 6 -cycles or has no induced 5 - and 6 -cycles, then $\iota\left(G, P_{3}\right) \leq \frac{n}{4}$ provided G is not a $\left\{P_{3}, C_{3}, C_{7}, C_{11}\right\}$-graph. Joint work with Bartolo and Borg improved this result for subcubic graphs. If G is subcubic and has no induced 6 -cycles, then $\iota\left(G, P_{3}\right) \leq \frac{n}{4}$ provided G is not one of twelve specific graphs. The bound is sharp.

References

[1] P. Borg, Isolation of connected graphs, Discrete Appl. Math. 339 (2023), 154-165.
[2] Y. Caro and A. Hansberg, Partial domination - the isolation number of a graph, Filomat 31:12 (2017), 3925-3944.
[3] Y. Huang, G. Zhang and X. Jin, New results on the 1-isolation number of graphs without short cycles, arXiv:2308.00581.
[4] O. Ore, Theory of graphs, American Mathematical Society Colloquium Publications, vol. 38, American Mathematical Society, Providence, R.I., 1962.
[5] G. Zhang and B. Wu, $K_{1,2}$-isolation in graphs, Discrete Applied Mathematics 304 (2021), 365-374.

