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e-mail: merce.mora@upc.edu
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INVITED TALKS





DEFECTIVE RAMSEY NUMBERS: CLASSICAL PROOFS
AND COMPUTER ENUMERATIONS

Tınaz Ekim

Boğaziçi University, Turkey

e-mail: tinaz.ekim@bogazici.edu.tr

We investigate a variant of Ramsey numbers called defective Ramsey num-
bers, introduced by Ekim and Gimbel in 2013, where cliques and independent
sets are generalized to k-dense and k-sparse sets, both commonly called k-
defective sets. Following some defective parameters in general graphs, we
focus on the computation of defective Ramsey numbers in some restricted
graph classes: cographs, chordal graphs, bipartite graphs, perfect graphs, split
graphs, cacti, and triangle-free graphs. We adopt a two-fold approach to tackle
defective Ramsey numbers. We provide direct proofs using structural graph
theory. When this technique falls short in obtaining new values of defective
Ramsey numbers, we use efficient graph enumeration techniques for structured
graphs.

References
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Perfect Graphs, Discrete Optimization, 34 (2019) 100548.
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DISJOINT COPIES OF GRAPHS IN EXTREMAL GRAPH
THEORY

Izolda Gorgol

Lublin University of Technology

e-mail: i.gorgol@pollub.pl

Most of graph theory problems were studied firstly for connected graphs.
In the talk I will present selected results which involves disconnected ones
with the special focus on graphs consisting of disjoint copies of a certain con-
nected graph. These results are connected with widely understood extremal
graph theory that explores the extremal (maximum or minimum) properties of
graphs subject to certain constraints. The issues I’ve selected will be Ramsey,
Induced Ramsey and Turán numbers.
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DOMINATION IN GRAPHS AND FORBIDDEN CYCLES

Michael A. Henning

University of Johannesburg

e-mail: mahenning@uj.ac.za

We discuss results showing that if certain cycles are forbidden, then the
known upper bounds on core domination parameters can be improved. Let G
be a connected graph of order n with minimum degree δ(G). Let g(G) denote
the girth of G, and so g(G) is the length of a shortest cycle in G.
It is known that if δ(G) ≥ 2 and n ≥ 8, then γ(G) ≤ 2

5n, where γ(G) is
the domination number of G. We show that if δ(G) ≥ 2 and n ≥ 14, and if G
has no induced 4-cycle and no induced 5-cycle, then γ(G) ≤ 3

8n. It is known
that if G is a cubic graph, then γ(G) ≤ 3

8n. We show that if G is a cubic
graph with girth g(G) ≥ 6 that does not contain a 7-cycle or a 8-cycle, then
γ(G) ≤ 1

3n.
It is known that if δ(G) ≥ 2 and n ≥ 11, then γt(G) ≤ 4

7n, where γt(G)
is the total domination number of G. We show that if n ≥ 19 and G has
no induced 6-cycle, then γt(G) ≤ 6

11n. It is known that if δ(G) ≥ 3, then
γt(G) ≤ 1

2n. We show that if δ(G) ≥ 3 and G has no induced 6-cycle, then
γt(G) ≤ 4

9n. It is known that if δ(G) ≥ 4, then γt(G) ≤ 3
7n. We show that if

δ(G) ≥ 4 and G has no 4-cycle, then γt(G) ≤ 2
5n.

It is known that if G ̸= K3,3 is a cubic graph, then i(G) ≤ 2
5n, where i(G)

is the independent domination number of G. We show that if G is a cubic
graph that contain no induced 4-cycle, then i(G) ≤ 3

8n. Furthermore, if G is
a bipartite cubic graph that contain no induced 4-cycle, then i(G) ≤ 4

11n.
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ETERNAL EVICTION AND INDEPENDENCE1

Kieka Mynhardt

University of Victoria

e-mail: kieka@uvic.ca

Graph protection involves the deployment of mobile guards on the vertices
of a graph. The various protection models can be described as two-player
games, alternating between a defender and an attacker: the defender chooses
the original positions of the guards, as well as the responses to the attacker,
and the attacker chooses the locations of the attacks; we say the attacker
attacks the vertices. In the (eternal) eviction game, at most one guard is
located at each vertex, and each configuration of guards is a dominating set of
the graph. The attacker attacks a vertex occupied by a guard, provided this
vertex has at least one unoccupied neighbour. The defender moves the guard
to an unoccupied neighbour; only one guard is allowed to move in response
to an attack. The defender wins the game if they can successfully defend any
sequence of attacks, including sequences that are infinitely long; the attacker
wins otherwise. In other words, the attacker’s goal is to force the defender
into a configuration of guards that is not dominating. The smallest number of
guards that can defend a graph G against any sequence of attacks is called the
eviction number of G, denoted by e∞(G). The eviction game was introduced
by Klostermeyer, Lawrence, and MacGillivray in 2016.
In this presentation I will demonstrate that the eviction number behaves

different from other domination parameters. This anomaly causes problems
when we try to prove results for e∞(G). I will illustrate this by discussing
a proof of an upper bound for e∞(G) in terms of α(G), the independence
number of G.

1Joint work with Gary MacGillivray and Virgélot Virgile
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RECENT PROGRESS ON SMALL AND LARGE RAMSEY
NUMBERS

Stanisław Radziszowski

Rochester Institute of Technology

e-mail: spr@cs.rit.edu

The new revision #17 of the dynamic survey Small Ramsey Numbers at
the Electronic Journal of Combinatorics has been just completed. In this talk
we will overview new developments since 2021 reported therein: there were
breakthrough in asymptotics, some amazing improvements of the bounds on
the classical Ramsey numbers, several less known but also very impressive
results on general graph Ramsey numbers, and a large number of contributions
across the area. We will also reveal some interesting details of the logistics of
evolving survey and its special features.

V





TUTORIALS





VISIBILITY CONCEPTS IN GRAPH THEORY

Sandi Klavžar

University of Ljubljana, Slovenia
Institute of Mathematics, Physics and Mechanics, Slovenia

e-mail: sandi.klavzar@fmf.uni-lj.si

Given a connected graph G and a set of vertices X ⊆ V (G), two vertices
x, y ∈ V (G) are called to be X-visible if there is a shortest x, y-path (also
called geodesic) whose interior vertices do not belong to X. Then X is

• a mutual-visibility set : if any two vertices of X are X-visible;

• an outer mutual-visibility set : if any two vertices x, y ∈ X and any two
vertices x ∈ X and y ∈ X are X-visible;

• a dual mutual-visibility set : if any two vertices x, y ∈ X and any two
vertices x, y ∈ X are X-visible; and

• a total mutual-visibility set : if any two vertices x, y ∈ V (G) areX-visible.

In this tutoring, we will present fundamental results on these concepts. A
special attention will be given to graphs of diameter two as there unexpected
connections with some classical mathematical problems and concepts arise.
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ALGEBRAIC TECHNIQUES IN PARAMETERIZED
GRAPH ALGORITHMS

Łukasz Kowalik

University of Warsaw

e-mail: lm.kowalik@uw.edu.pl

For a number of algorithmic graph problems that are NP-hard, it is pos-
sible to get considerable speed-ups by phrasing the task as a kind of counting
problem and then using algebraic techniques. We will see a number of such
examples, including:

• Hamiltonian cycle in 2npoly(n) time using inclusion-exclusion principle,

• Vertex coloring in time 2npoly(n) time using cover product or fast subset
convolution,

• Finding a k-vertex path in 2kpoly(n) time using polynomials over a finite
field.

The material will be mostly based on Chapter 11 of the textbook Parame-
terized Algorithms by Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk,
Pilipczuk, Saurabh.
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H-FREE GRAPHS: FROM STRUCTURE TO
ALGORITHMS

Paweł Rzążewski

Warsaw University of Technology

e-mail: pawel.rzazewski@pw.edu.pl

One of the active areas of algorithmic graph theory is to investigate how the
restrictions imposed on the set of input instances influence the complexity of
computational problems. Quite often we can witness an interesting interplay
between graph-theoretic and algorithmic results: a good understanding on the
structure of instances may help in the design of efficient algorithms.
During the tutorial we will show some tools and techniques that can be

used to develop algorithms for graphs that exclude a fixed graph F as an
induced subgraph. We will mostly focus on the case that F is a path.
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POSTERS





MAJORITY COLORING OF GRAPHS: THEORETICAL
INSIGHTS AND PRACTICAL APPLICATION

Aleksandra Laskowska

Gdańsk University of Technology

e-mail: alelaskowska@gmail.com

Let G = (V,E) be a simple, undirected graph and map c : V → C a
coloring, where C is a set of colors. Majority coloring is such coloring that
every v ∈ V has at most 1

2deg(v) neighbours coloured c(v). In this poster I
show significant definitions and theorems regarding vertex majority coloring.
Additionally, putting this theoretical concept into practice is discussed.
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CERTIFIED DOMINATION IN GRAPHS USING BINARY
LINEAR PROGRAMMING

Mateusz Miotk, Joanna Raczek

University of Gdańsk, Poland, Gdańsk University of Technology, Poland

e-mail: mateusz.miotk@ug.edu.pl, joanna.raczek@pg.edu.pl

A set D of vertices of a graph G = (VG, EG) is a dominating set of G if
every vertex in VG−D is adjacent to at least one vertex in D. The domination
number of a graph G, denoted by γ(G), is the cardinality of a smallest domi-
nating set of G. A subset D ⊆ VG is called a certified dominating set of G if
D is a dominating set of G, and every vertex in D has either zero or at least
two neighbours in VG −D. The cardinality of a smallest certified dominating
set of G is called the certified domination number of G, and it is denoted by
γcer(G).
A BLP (binary linear program) is constructed to derive the system of

linear constraints corresponding to the certified domination conditions. The
objective is to drive the minimum cardinality of the certified dominating set
problem through a linear optimisation problem. This approach is used to
identify the optimal domination set in different categories of graphs.
The clarity of the results demonstrates that the BLP algorithm is effective

in recognising the minimum certified dominating set associated with the certi-
fied domination set. This will result in significant advances in theory, practice,
research, and applications.

References

[1] M. Dettlaff, M. Lemańska, M. Miotk, J. Topp, R. Ziemann, and P.
Żyliński, Graphs with equal domination and certified domination num-
bers, Opuscula Math. 39 (2019), no. 6, 815–827.

[2] M. Dettlaff, M. Lemańska, J. Topp, R. Ziemann, and P. Żyliński, Certified
domination, AKCE International Journal of Graphs and Combinatorics
(2018).

[3] M. Miotk, J. Raczek, Modelling Efficient Fire Safety Water Networks by
Certified Domination, submitted.
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CERTIFIED DOMINATION IN WATER SUPPLY
NETWORKS FOR FIRE SAFETY

Mateusz Miotk, Joanna Raczek

University of Gdańsk, Poland, Gdańsk University of Technology, Poland

e-mail: mateusz.miotk@ug.edu.pl, joanna.raczek@pg.edu.pl

Providing water to the fire protection water supply network is a crucial
aspect of the overall fire protection and life safety strategy of an entire com-
munity. Currently, as new buildings are emerging, necessary calculations are
being performed so that the buildings are complied with fire safety regulations.
Before everything it is important to make sure that the proper amount of

water is available to the responding fire department for both suppression of
the fire in the building, and protection of any exposed buildings. All water-
based fire protection systems need water. Without access to an adequate water
supply these systems will not function properly.
We introduce a theoretical model of a water supply network given in the

language of graph theory. The model uses the certified dominating sets to focus
on placing the water supply issues and hence other, less important parameters
are omitted.
A set D of vertices of a graph G = (V,E) is a dominating set of G if every

vertex in V −D is adjacent to at least one vertex inD. The domination number
of a graph G, denoted by γ(G), is the cardinality of a smallest dominating set
of G. A subset D ⊆ V is called a certified dominating set of G if D is a
dominating set of G, and every vertex in D has either zero or at least two
neighbours in V −D. The cardinality of a smallest certified dominating set of
G is called the certified domination number of G, and it is denoted by γcer(G).
Thanks to the minimum certified dominating sets it is possible to deter-

mine where in the environment to place pumping stations and wells to meet,
fire safety requirements, while minimising the cost. We assume the cost of
installing a pumping station to be approximately 2.5 times that of a well. The
objective is to ensure that every location without a water source is connected
by a pipe to a pumping station, thereby ensuring that the water pressure
requirements of user locations are met. Also, a place with a well should be
connected only to places with a well or a pumping station on order to avoid
any pressure decreases.
The aforementioned approach would be further reinforced by the presen-

tation of case studies in which cost savings are demonstrated and, simultane-
ously, compliance with relevant fire safety standards is supported in a different
context. Consequently, the new approach must act once more as a practical
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tool for urban planners and engineers in promoting a systemic approach to
improvements in fire safety infrastructure.

References

[1] M. Dettlaff, M. Lemańska, M. Miotk, J. Topp, R. Ziemann, and P.
Żyliński, Graphs with equal domination and certified domination num-
bers, Opuscula Math. 39 (2019), no. 6, 815–827.

[2] M. Dettlaff, M. Lemańska, J. Topp, R. Ziemann, and P. Żyliński, Certified
domination, AKCE International Journal of Graphs and Combinatorics
(2018).

[3] M. Miotk, J. Raczek, Modelling Efficient Fire Safety Water Networks by
Certified Domination, submitted.
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INTERACTIVE SEARCH IN GRAPHS

Izajasz Wrosz

Gdańsk University of Technology

e-mail: izajasz.wrosz@pg.edu.pl

Searching plays a fundamental role in computer science and computer en-
gineering due to its ubiquitous real-world applications and its numerous con-
nections to other important computational problems. In searching we want
to locate a known element, whose location in the search space is unknown, by
querying different locations of the search space in a sequence of steps. In in-
teractive search an emphasis is made on the type and amount of information
revealed through the queries, and how to exploit this information in search
algorithms. In this poster, we describe applications of an interactive search
model (i.e., binary search in node-weighted trees) in data retrieval systems. In
this search model, in each step, the algorithm queries a vertex q and receives
an answer, that either q is the desired element, or receives the neighbor of q
closer to the target than q. While each query has a cost given by the weight
function, the goal is to find an adaptive search strategy requiring the minimum
cost in the worst case.

5





CONTRIBUTED TALKS





SOME HARMONIC NUMBER IDENTITIES FOR
PHYLOGENETIC TREE ANALYSIS

Krzysztof Bartoszek

Linköping University

e-mail: krzysztof.bartoszek@liu.se, krzbar@protonmail.ch

Values associated with phylogenetic trees like the total tree area [4] or the
cophenetic index [5] can be represented through the height of the tree, and
the time to coalescent of a random pair of tips. In this way the given index,
for a random tree, can be studied by considering a pair of (dependent) one–
dimensional random variables. Control over their moments will immediately
provide information on the behaviour of these indices [1, 3, 6]. In order to
obtain these moments, for the pure birth tree, one has to consider rather
involved harmonic and quadratic harmonic sums. In the finite term case,
these sums often turn out to have closed form formulæ in terms of harmonic
numbers. However, surprisingly, symbolic algebra systems do not seem to be
able (at least out of the box) to find these final forms. In our talk we will
show how these sums arrive in the analysis of tree heights, in what situations
computer algebra systems fail, and how one can approach these sums [2].
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ON VARIOUS TYPES OF PROPER SECONDARY
DOMINATING SETS
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Rzeszow University of Technology

e-mail: pbednarz@prz.edu.pl, a.michalski@prz.edu.pl, m.pirga@prz.edu.pl

Let k ≥ 1 be an integer. A subset D ⊂ V (G) is (1,k)-dominating if for
every vertex v ∈ V (G) \ D there are u,w ∈ D such that uv ∈ E(G) and
dG(v, w) ≤ k. If k = 1 then we obtain the definition of (1,1)-dominating sets,
which are also known as 2-dominating sets. If k = 2 then we have the concept
of (1,2)-dominating sets, see [1].
In [2] Michalski et. al introduced the concept of proper (1,2)-dominating

sets to distinguish (1,2)-dominating sets from (1,1)-dominating sets. A proper
(1,2)-dominating set is a (1,2)-dominating set that is not (1,1)-dominating.
Basing on this idea, Bednarz and Pirga in [3] defined proper 2-dominating
sets i.e. 2-dominating sets which are not 3-dominating.
In this talk we present some results concerning proper (1,2)-dominating

sets and proper 2-dominating sets, in particular we focus on the problem of
their existence. Moreover, we show relations between parameters of these
types of domination.
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PLANE TRIANGULATIONS WITHOUT SPANNING
2-TREES

Allan Bickle
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A 2-tree is a graph that can be formed by starting with a triangle and iter-
ating the operation of making a new vertex adjacent to two adjacent vertices of
the existing graph. Leizhen Cai asked in 1995 whether every maximal planar
graph contains a spanning 2-tree. We answer this question in the negative by
constructing an infinite class of maximal planar graphs that have no spanning
2-tree. We also show that the largest spanning tree may have an arbitrarily
small fraction of all vertices and find some criteria that guarantee a spanning
2-tree.
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ISOLATION OF GRAPHS

Peter Borg

University of Malta

e-mail: peter.borg@um.edu.mt

Given a set F of graphs, we call a copy of a graph in F an F-graph. The
F-isolation number of a graph G, denoted by ι(G,F), is the size of a smallest
subset D of the vertex set V (G) such that the closed neighbourhood N [D]
of D intersects the vertex sets of the F-graphs contained by G (equivalently,
G − N [D] contains no F-graph). When F consists of a 1-clique, ι(G,F)
is the domination number of G. When F consists of a 2-clique, ι(G,F) is
the vertex-edge domination number of G. The general F-isolation problem
was introduced by Caro and Hansberg [10] in 2017. They established many
results on F-isolation numbers and posed several problems. Solutions will be
presented together with most of the isolation results to date.
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COMPUTATIONAL COMPLEXITY
OF GREEDY PARTITIONING OF GRAPHS2

Piotr Borowiecki

University of Zielona Góra

e-mail: p.borowiecki@issi.uz.zgora.pl

In this talk we consider a variant of graph partitioning problem consist-
ing in partitioning the vertex set into the minimum number of sets such that
each of them induces a graph in a fixed hereditary class of graphs (property).
For various properties we will discuss the computational complexity of several
problems arising when partitions are generated by the greedy algorithm. In
this context, we will point out the cases that are computationally hard, and
those that can be solved in polynomial time. We will also present a lower
bound based on the Exponential-Time Hypothesis as well as some basic result
on generalized independence and domination allowing the dynamic program-
ming approach in the construction of an exact algorithm. We will also mention
an application of the above concepts to the construction of new χ-bounded
classes of graphs.
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ON A-CORDIAL CATERPILLARS3

Sylwia Cichacz

AGH University of Kraków

e-mail: cichacz@agh.edu.pl

Hovey introduced A-cordial labelings as a generalization of cordial and
harmonious labelings [3]. If A is an Abelian group, then a labeling f : V (G) →
A of the vertices of some graph G induces an edge labeling on G; the edge
uv receives the label f(u) + f(v). A graph G is A-cordial if there is a vertex-
labeling such that (1) the vertex label classes differ in size by at most one and
(2) the induced edge label classes differ in size by at most one.
In the literature, mostly cordial labeling in cyclic groups is studied. There

is a famous (still open) conjecture which states that all trees are Zk-cordial
for all k [3]. The situation changes a lot if A is not cyclic. It was proved that
all trees, except P4 and P5, are Z2

2-cordial [1].
Patrias and Pechenik posed a conjecture that for every group A there is

an A-cordial labeling for almost every path [4]. Erickson et al. extended the
conjecture for all trees [1].
In the talk, we show that the conjecture holds for paths [2] but it is not

true for general trees - even if we consider an A-rainbow coloring instead of
A-cordial (i.e. an A-cordial labeling in which |A| = |V (G)|) of caterpillars.
Moreover, we will show some correspondence of A-cordial caterpillars and
Cayley digraphs on A.
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TREE PACKING CONJECTURE

Maciej Cisiński and Andrzej Żak

AGH University of Kraków

e-mail: cisinski@agh.edu.pl, zakandrz@agh.edu.pl

The Tree Packing Conjecture (TPC) by Gyárfás states that any set of
trees T2, . . . , Tn−1, Tn such that Ti has i vertices pack into Kn. The conjecture
is true for bounded degree trees, but in general, it is widely open. Bollobás
proposed a weakening of TPC which states that k largest trees pack. We
prove, among others, that seven largest trees pack.
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INTERVAL COLOURING THICKNESS VIA THE ERDŐS
FAMILY OF GRAPHS

Ewa Drgas-Burchardt

University of Zielona Góra

e-mail: e.drgas-burchardt@im.uz.zgora.pl

Let θint(G) denote the minimum number of parts in a partition of the
edge set of the graph G such that graphs induced by all the parts are interval
colourable. Giving a finite projective plane π(n) of order n with the sets W ,L
of points and lines, respectively, Erd(n) is known to be a graph with vertex set
W ∪ L ∪ {u} and edge set {wl : w ∈ W, l ∈ L and w is incident to l } ∪ {ul :
l ∈ L}. Next, if L = {l1, . . . , ln2+n+1} and a sequence r1, . . . , rn2+n+1 of
positive integers is given, by Erd(r1, . . . , rn2+n+1) we mean a graph resulting
from Erd(n) by a multiplication of the vertex li with ri vertices made for all
i ∈ [n2+n+1]. Graphs Erd(r1, . . . , rn2+n+1) constructed for all possible finite
projective planes and all possible parameters r1, . . . , rn2+n+1 form the Erdős
family of graphs.
Let l be a fixed line of a finite projective plane π(n) and w1, . . . , wn+1 be all

points incident to l. Next let for i ∈ [n+1], a set Li consist of all lines incident
to wi that are different from l. We prove that if an ordering l1, . . . , ln2+n+1 of
the set L is given and positive integers r1, . . . , rn2+n+1 are such that at least
t different indices i from [n+ 1] satisfy rk = rj if lk, lj ∈ Li, then

θint(Erd(r1, . . . , rn2+n+1)) ≤ max
{
2,
⌈n+ 2− t

2

⌉}
.

Consequently, a tight upper bound of
⌈
n+2
2

⌉
on θint(Erd(r1, . . . , rn2+n+1)) is

valid in the whole Erdős family of graphs.
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ON OPERATIONS PRESERVING
WORD-REPRESENTABILITY OF GRAPHS

Tithi Dwary and K. V. Krishna

Indian Institute of Technology Guwahati, India

e-mail: tithi.dwary@iitg.ac.in, kvk@iitg.ac.in

A simple graph is called a word-representable graph if there is a word over
its vertex set such that any two vertices are adjacent in the graph if and only
if they alternate in the word. The class of word-representable graphs was first
studied by Sergey Kitaev and Steven Seif in the context of Perkin semigroup
[4]. Over the years an extensive literature has developed on this topic, impact-
ing various fields of mathematics and computer science. A word-representable
graph is a k-word-representable graph, if it is represented by a word in which
every letter appears exactly k times. The smallest k such that a graph is
k-word-representable is said to be the representation number of the graph. A
word-representable graph is said to be a permutationally representable graph,
if it can be represented by a word that is a concatenation of permutations on
their vertices. The class of comparability graphs, graphs which admit transi-
tive orientations, is precisely the class of permutationally representable graphs
[4]. The smallest k such that a permutationally representable graph is rep-
resented by a concatenation of k permutations on its vertices is called the
permutation-representation number (in short, prn) of the graph. Further, it is
known that the general problems of determining the prn of a permutationally
representable graph, and the representation number of a word-representable
graph are computationally hard. For a detailed introduction to this topic, one
may refer to the monograph [3].
The graph operations were proved to be useful for determining the rep-

resentation number of graphs. For example, it was proved in [5] that 3-
subdivision of every graph is 3-word-representable and utilizing this, the rep-
resentation number of prism is determined. It was proved in [3] that the class
of word-representable graphs is closed under certain graph operations such as
connecting two graphs by an edge, and gluing two graphs at a vertex. More-
over, the representation numbers of the resulting graphs were obtained. Some
fundamental graph operations viz., edge-deletion, edge addition do not neces-
sarily preserve the word-representability; however, certain sufficient conditions
on graphs to preserve word-representability with respect to these operations
were established [1].
In this work, we obtain necessary and sufficient conditions for permutation

representability of graphs with respect to the following operations: gluing
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two graphs at a vertex, replacing a vertex by a module, and lexicographical
product of graphs. Further, we obtain the prns of the resultant graphs. A
modular decomposition of a graph is a partition of the vertex set of the graph
into modules. While it was introduced to study the structure of comparability
graphs, it has applications in the theory of posets, and scheduling problems. In
this work, we extend the characterization of comparability graphs with respect
to the modular decomposition (given in [6]) to word-representable graphs.
Accordingly, we determine the representation number of a word-representable
graph in terms of the prns of its modules and the representation number of
the quotient graph. In this connection, we also obtain a complete answer to
the open problem posed by Kitaev and Lozin [3, Chapter 7] on the word-
representability of the lexicographical product of graphs.
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DISTINGUISHING VERTICES OF GRAPHS USING
SEQUENCES

Anna Flaszczyńska

AGH University of Kraków

e-mail: flaszczynska@agh.edu.pl

In the paper [1] the authors distinguish vertices of a graph by sequences.
This talk is about distinguishing vertices of a hypercube by sequences. Let
f be the edge coloring of an n-dimensional hypercube. In a hypercube, we
can define the order of edges, which results from the structure of this graph.
Next, we can assign a sequence of colors to each vertex in such a way that
the i-th element of this sequence is the color of the i-th edge coming from this
vertex. We want to find a minimum number of colors to distinguish each pair
of vertices in an n-dimensional hypercube.
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THE BIPLANAR TREE GRAPH

Julián Alberto Fresán-Figueroa
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Ana Paulina Figueroa

Instituto Tecnológico Autónomo de México

e-mail: apaulinafg@gmail.com

The complete twisted graph of order n, denoted by Tn, is a complete simple
topological graph with vertices u1, u2, . . . , un, where two edges uiuj and ui′uj′
intersect if and only if i < i′ < j′ < j or i′ < i < j < j′. The convex geometric
complete graph of order n, denoted by Gn, is a convex geometric graph with
vertices v1, v2, . . . , vn arranged counterclockwise, with each pair of vertices
being adjacent. A biplanar tree of order n is a labeled tree with vertex set
{v1, v2, . . . , vn} that can be embedded in both Tn and Gn as a planar graph.
Given a connected graph G, the (combinatorial) tree graph T (G) is a graph
whose vertices are the spanning trees of G, and two trees P and Q are adjacent
in T (G) if there exist edges e ∈ P and f ∈ Q such that Q = P − e+ f . For all
positive integers n, T (n) denotes the graph T (Kn). The biplanar tree graph,
B(n), is the subgraph of T (n) induced by the biplanar trees of order n. In
this conference, we characterize biplanar trees and talk about some properties
and structure of the biplanar tree graph.
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GRAPHS
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A mutual-visibility set of a connected graph G is a set of vertices S ⊂ V (G)
such that for every pair of vertices x, y ∈ S there is a shortest x, y-path whose
interior vertices are not in S. We shall consider a robot navigation model that
uses such sets. Assume that in each vertex of a mutual-visibility set S a robot
is placed. At each stage one robot moves to a neighbouring vertex. Then, the
set S is a mobile mutual-visibility set of G if there exists a sequence of moves
of the robots such that all the vertices of G are visited by at least one robot,
while keeping all the time the mutual-visibility property for the set of vertices
of G occupied by the set of robots. The mobile mutual-visibility number of G
is the cardinality of a largest mobile mutual-visibility set of G. These mobile
mutual-visibility concepts are introduced in this work, and the study of its
combinatorial and computational properties is initiated.
The results of the work are from the article [1]. The speaker is supported by

the Spanish Ministry of Science and Innovation, ref. PID2019-105824GB-I00.
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ZONAL LABELS GENERALIZED TO ABELIAN GROUPS

John Gimbell

University of Alaska

e-mail: jggimbel@alaska.edu

We consider planar maps with a given abelian group where the vertices are
labelled with nonzero elements from the group in such a way that the labels
on each region sum to zero. Much interesting work is being done with this
concept where the group in question is Z3 (It is related to the Four Color
Theorem). We expand on current ideas and show that some are true, more
broadly, in abelian groups in general.
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FAIR AND PRIVATE DATA PREPROCESSING
THROUGH MICROAGGREGATION

Carlos González

Newcastle University

e-mail: carlos.gonzalez@ncl.ac.uk

Privacy protection for personal data and fairness in automated decisions
are fundamental requirements for Responsible Machine Learning [3]. Both
may be enforced through data preprocessing and share a common target:
data should remain useful for a task, while becoming uninformative of the
sensitive information. The intrinsic connection between privacy and fairness
implies that modifications performed to guarantee one of these goals, may
have an effect on the other, e.g., hiding a sensitive attribute from a classifica-
tion algorithm might prevent a biased decision rule having such attribute as
a criterion. In this talk, we present Fair-MDAV [1], a fairness-and-privacy
correcting mechanism based on the MDAV clustering algorithm [2]. This work
resides at the intersection of algorithmic fairness and privacy: we show how
the two goals are compatible and may be simultaneously achieved, with a small
loss in predictive performance. Our results are competitive with both state-
of-the-art fairness correcting algorithms and hybrid privacy-fairness methods.
Experiments were performed on three widely used benchmark datasets: Adult
Income, COMPAS and German Credit.
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ARC-DISTINGUISHING OF ORIENTATIONS OF GRAPHS

Aleksandra Gorzkowska and Jakub Kwaśny
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A distinguishing index of a graph is the minimum number of colours in an
edge colouring such that the identity is the only automorphism that preserves
the colouring. The study of the distinguishing index was started by Kalinowski
and Pilśniak [2] and since then, there have been a number of results on the
subject. In particular, the optimal bounds for the distinguishing index have
been found for the classes of traceable or claw-free graphs. Recently, the vari-
ant of the problem for digraphs has attracted some interest. A distinguishing
index of a digraph is the minimum number of colours in an arc colouring that
is preserved only by the identity. In particular, results for symmetric digraphs
have been obtained [3].
Meslem and Sopena [4] started a study of determining the minimum and

maximum value of distinguishing index among all possible orientations of a
given graph G. We continue this direction of investigation. However, we take
a different approach to the problem and consider the relation between the
distinguishing index of the orientations of G and the distinguishing index of
G. In the talk, we present sharp results for trees, unbalanced bipartite graphs,
traceable graphs and claw-free graphs. With this, we extend the results of
Meslem and Sopena to some wider classes of graphs and answer a question
posed by them about the class of complete bipartite graphs.
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Tomáš Madaras, Alfréd Onderko
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An embedding of a graph G, of order n, (in its complement G) is a per-
mutation σ on V (G) such that if an edge xy belongs to E(G), then σ(x)σ(y)
does not belong to E(G). In others words, an embedding is an (edge-disjoint)
packing of two copies of G into a complete graph Kn. At first we will consider
the problem of the uniqueness of such packings of two copies. Two such em-
beddings σ1, σ2 of a graph G are said to be distinct if the graphs G ⊕ σ1(G)
and G⊕σ2(G) are not isomorphic (for graphs G1 and G2 with V (G1) = V (G2)
and E(G1) ∩ E(G2) = ∅ the edge sum G1 ⊕ G2 has V (G) = V (G1) = V (G2)
and E(G) = E(G1) ∪ E(G2)). A graph G is called uniquely embeddable if for
all embeddings σ of G, all graphs G⊕ σ(G) are isomorphic.
Let Cn1 ∪Cn2 ∪ . . .∪Cnk

be a 2-factor i.e. a vertex-disjoint union of cycles.
We completely characterize 2-factors i.e. we prove which 2-factors do not have
packing of two copies, which have unique packing of two copies and which have
at least two distinct of two copies. During this talk some prove ideas will be
presented. Moreover we present the generalization of this problem into the
problem of the uniqueness of packing of three copies of 2-factors and give the
solution of it.
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Cops N’ Robbers is a popular game, which also plays a vital role in graph
theory, where a policeman pursues the criminal. The game is cop-win if cop
is able to catch the robber within allowed set of moves, and robber-win, if
the robber is able to escape the law indefinitely. Recent advances in graph
and game theory provide a toolbox to established whether given game, repre-
sented in a graph form, is cop-win or robber-win by scaling down the graph to
a solvable form. In this novel approach, the researcher reinterprets the classic
game setting, transforming the pursuit-evasion scenario into a strategic com-
petition between a dominant entity, portrayed as the cop, aspiring to establish
monopoly in a given market, and a smaller competitor (or rather an aggre-
gation of number of smaller entities), represented as the robber, seeking to
persevere, therefore maintaining market diversity. An allowable set of moves
is then understood as possible competitive strategies that both players are
able to choose. By utilizing the before mentioned tools, one can then deter-
mine whether a researched market is likely to be hegemonized by an aspiring
monopolist and, if so, approximate the timeframe and counter-strategies. A
cop number of such graph can be reinterpreted as minimal number of large
players that need to cooperate in order to take over the market.
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ON 3-COLOURABILITY OF (BULL, H)-FREE GRAPHS
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We callG anH-free graph, ifG does not containH as an induced subgraph.
In a class of bull-free graphs, where bull is a triangle with two additional edges
attached to its two vertices, the 3-colourability problem remains NP-complete.
However, in the class of graphs defined by two forbidden subgraphs, bull and
one of stars S(1, 1, 2) or S(1, 2, 2), it is possible to find a polynomial algorithm
that resolves 3-colourability. Such an algorithm returns a colouring if the
given graph is 3-colourable, or a certain subgraph which is obviously non-3-
colourable, otherwise.
In this talk we present such algorithms for (bull, S(1, 1, 2))-free and (bull,

S(1, 2, 2))-free graphs. The main tool used is the characterisation of perfect
graphs given by the Strong Perfect Graph Theorem.
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To determine the values of Turan numbers or Ramsey numbers, algorithms
are needed to check whether the graph contains a subgraph. A simple automa-
ton will be presented that checks whether there are subgraphs or induced sub-
graphs in a graph. The results related to Turan numbers and Ramsey numbers
will also be presented.
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An L(2, 1)-coloring is a vertex coloring where vertices are colored with
non-negative integers such that if two vertices are adjacent, then their colors
must differ by at least 2, and if two vertices are at distance 2 their colors must
be different. The span of an L(2, 1)-coloring φ is the biggest color used by
the coloring φ. The L(2, 1)-Grundy number is the maximum span among all
possible L(2, 1)-greedy colorings of a graph.
In this talk we present results about the L(2, 1)-Grundy number for some

graph families.
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A colouring of edges of a graph G is a majority colouring, if for every
vertex v of G, at most half the edges incident with v have the same colour.
This concept was recently introduced in [1] where, among others, we proved
that every finite graph without pendant vertices admits a majority 4-edge
colouring. Moreover, if the minimum degree of G is at least 4, then G admits
a majority 3-edge colouring.
In the talk, the list version of the problem will be investigated, also for

infinite graphs. As a consequence of our results, the Unfriendly Partition
Conjecture is confirmed for line graphs.
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The integrity of a graph G = (V,E) is defined as the smallest sum |S| +
m(G − S), where S is a subset of the set V , and m(H) denotes the order of
the largest component of the graph H.
Benko, Ernst, and Lanphier provided and proved an asymptotic bounds

for planar graphs in terms of the order of the graph. We prove asymptotic
results concerning two-dimensional grid-graphs.
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GROUP IRREGULARITY STRENGTH OF
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We investigate the group irregular strength (sg(G)) of graphs, i.e the small-
est value of s such that for any Abelian group Γ of order s exists a function
g : E(G) → Γ such that sums of edge labels at every vertex is distinct. We
give results for bound and exact values of (sg(G)) for some chosen families of
graphs.

References

[1] M. Anholcer and S. Cichacz, Group irregular labelings of disconnected
graphs. Contributions to Discrete Mathematics 12(2) (2017), 158–166.

[2] M. Anholcer and S. Cichacz and M. Milanic̆, Group irregular strenght of
connected graphs. Journal of Combinatorial Optimization 10(3) (2013),
1–17.

[3] T. Nierhoff, A tight bound on the irregularity strength of graphs. SIAM
J. Discr. Math 13 (2000), 313-323.

25



HETEROGENEOUS MOBILE AGENTS IN GRAPHS

Łukasz Kuszner
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Computational tasks using teams of mobile agents deployed in a network
arise in the context of many applications and theoretically studied problems
ranging from two-agent problems like rendezvous to multi-agent scenarios like
searching, exploration, patrolling or evacuation.
Agents are often assumed to be identical but scenarios with agents having

different capabilities have also been studied in various contexts.
Agents with different speeds were considered in [5], where multiple robots

are traveling along a ring to determine their initial positions and in [4, 8] with
the goal of patrolling.
In [3] agents capable of traveling in two modes that differ with maximal

speeds when searching a line segment were studied.
The problem of evacuating agents with an additional constraint that each

type of agent can only use a specific subset of edges in the graph was studied
in [1] and the similar approach was applied to the rendezvous problem in [2,
6, 7].
We present an overview of the concept of heterogeneous mobile agents in

graphs, the recent results, and open problems.
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Given a connected graph G, a set S ⊂ V (G) is a k-antiresolving set for
G, if k is the largest integer such that for all u /∈ S there exists a set Su ⊆
V (G) \ (S ∪ {u}) with |Su| ≥ k − 1 such that dG(u, v) = dG(x, v) for every
v ∈ S and every x ∈ Su, where dG(a, b) is the distance between a, b. The
k-metric antidimension of G is the cardinality of a smallest k-ARS for G.
This work focuses on the use of the k-metric antidimension of graphs as a

theoretical framework for the privacy measure of social networks called (k, ℓ)-
anonymity. A graph G meets (k, ℓ)-anonymity with respect to active attacks
to its privacy, if k is the smallest positive integer such that the k-metric an-
tidimension of G is not larger than ℓ.
Graphs with a predetermined structure like cylinders, toruses, and 2-

dimensional Hamming graphs, as well as, randomly generated graphs are
considered, in order to evaluate the (k, ℓ)-anonymity they achieve. We have
taken a combinatorial approach for the graphs with a predetermined structure,
whereas for randomly generated graphs we have developed an integer pro-
gramming formulation and computationally tested its implementation. The
results indicated that, according to the (k, ℓ)-anonymity measure, only the
2-dimensional Hamming graphs and some general random dense graphs are
achieving some higher privacy properties.
The results of this talk were published in the article [1]. The speaker is

supported by the Spanish Ministry of Science and Innovation, ref. PID2019-
105824GB-I00.

References
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MAXIMAL TRANSITIVE SUBTOURNAMENTS OF A
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Centro de Matemática de La Plata, FCE-UNLP, Argentina

e-mail: marisa@mate.unlp.edu.ar and guadalupesanchezv@hotmail.com

Bernardo Llano

Universidad Autónoma Metropolitana, Mexico

e-mail: llano@xanum.uam.mx

We introduce the maximal transitive subtournament (or the tt-clique) op-
erator τ of a digraph D. The τ operator of a digraph D is the intersecting
digraph of its tt-cliques preserving the orientation.
This operator is a corresponding notion to the widely studied clique oper-

ator of graphs (the intersection graph of the maximal complete subgraphs of
a given graph). On the other hand, the τ operator is the generalization of the
well-known line digraph of a digraph D.
We also define convergent, periodic and divergent digraphs over the τ

operator. For the basics on (di)graph operators see [2].
Some basic properties of the operator are studied and we exhibit infinite

families of convergent and divergent digraphs under τ . It is proved that for
every p ∈ N there exists an infinite family of finite τ -periodic digraphs of
period p.
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FIBONACCI CORDIAL LABELING OF CORONA
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An injective function f from vertex set, of a graph G, V (G) to the set
{F0, F1, F2, · · · , Fn}, where Fi is the ith Fibonacci number (i = 0, 1, · · · , n),
is said to be Fibonacci cordial labeling if the induced function f∗ from the
edge set E(G) the set {0, 1} defined by f∗(uv) = (f(u) + f(v)) ( mod 2)
satisfies the condition |ef (0)− ef (1)| ≤ 1, where ef (0) is the number of edges
with label 0 and ef (1) is the number of edges with label 1. A graph that
admits Fibonacci cordial labeling is called a Fibonacci cordial graph. In 2020,
Mitra and Bhoumik discussed whether the corona graphs Cn ⊙Km for m ≤ 3
are Fibonacci cordial. We extend their work for Cn ⊙ Km for m ≥ 4 and
investigate the conditions under which Kn,n, ⊙Kp is Fibonacci Cordial.
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STUDY OF THE TOTAL TRIPLE ROMAN DOMINATION
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The Total Triple Roman domination in Graphs arises as a new variant
of the Roman domination. A Roman domination in graphs is a modeling of
a military defensive problem of the Roman empire defined by Cockayne [3]
in 2004. Triple Roman domination was introduced by Ahangar et al. [1] in
2021 with the objective of having each territory defended by three legions,
minimizing its cost. Let us consider f as a function f : V (G) → {0, 1, 2, 3, 4}
in the graph G = (V,E), such that, f(AN [v]) ≥ |AN(v)|+3 for any vinV with
f(v) < 3, with AN(v) ⊆ V being the set of adjacent vertices to v with positive
label. Total Triple Roman domination was born as a new variant of Triple
Roman domination with the aim of making it more efficient in the face of an
individual attack on the nodes. This variant defined by a function f on the
graph G must satisfy the previous conditions of the Triple Roman domination,
in addition to any subgraph induced in G by the set uϵV , such that f(u) ̸= 0
does not have isolated vertices. The Total Triple Roman domination number
γ[t3R] (G) is defined as the minimum of the weight of the sum of the labels
w(f) =

∑
f(v) and the function f defined in G is a γ[t3R] (G)−function. In

this work some bounds are established. Exact values are also studied for some
families of graphs such as paths, cycles, bistars, bipartite and spider graphs.
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Let G be a graph. A k-coloring of G is a partition π = {S1, · · · , Sk} of
V (G) so that each Si are independent set and take same color. A k-coloring
π = {S1, · · · , Sk} of V (G) is a neighbor-locating coloring if any two vertices
u, v ∈ Si, there is a color class Sj for which, one of them has a neighbor in Sj

and the other not. The minimum k with this property, is said to be neighbor-
locating chromatic number of G, denote by χNL(G) of G.
In this talk we discuss on the neighbor-locating chromatic number of Cartesian
and lexicographic product of two graphs.
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Maŕia José Souto-Salorio

Universidade da Coruña

e-mail: maria.souto.salorio@udc.es

The concept of isolation in graphs arises by relaxing the condition of dom-
ination [1]. Let D be a set of vertices of a graph G = (V,E) and denote by
N [D] the set of vertices in D or with a neighbour in D. We say that D is
isolating if the subgraph induced by V −N [D] has no edges. In general, if F
is a set of graphs, we say that D is F-isolating if no subgraph of G−N [D] is a
copy of a member of F [2]. Hence, usual domination and isolation correspond
to F-isolation for the sets F = {K1} and F = {K2}, respectively. In this
work, we study F-isolation when F consists of the k-star K1,k for some k ≥ 1.
Concretely, we establish some upper bounds on the minimum cardinality of
a {K1,k}-isolating set for trees and characterize all trees attaining the given
bounds.
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A simple graph G = (V,E) is called a word-representable graph if there
exists a word w over its vertex set V such that, for all a, b ∈ V , ab ∈ E if and
only if a and b alternate in w. The word-representable graphs covers many
important classes of graphs including comparability graphs, circle graphs, and
3-colorable graphs. The monograph by Kitaev and Lozin [3] provides a com-
prehensive account of word-representable graphs, their connections to other
contexts, and contributions to the topic.
A word-representable graph is said to be k-word-representable if it is repre-

sented by a word in which every letter occurs exactly k times. The smallest k
such that a graph is k-word-representable is called the representation number
of the graph. If a word representing a word-representable graph is of the form
p1p2 · · · pk, where each pi’s is a permutation of its vertices, then the graph
is said to be permutationally k-representable. In fact, the class of permu-
tationally representable graphs is precisely the class of comparability graphs
[4]. The permutation-representation number (in short prn) of a comparability
graph is the the minimum value of k such that the graph is permutationally
k-representable. It is to be noted that the representation number of a compa-
rability graph is at most its prn. The class of complete graphs is precisely the
graphs with the prn one.
The class of graphs with prn at most two is characterized as the class of

permutation graphs [1], and the class of circle graphs is characterized as the
class of graphs with representation number at most two [2]. In general, it was
shown that determining the prn and representation number of a permutation-
ally representable graph are computationally hard [5, 2]. In the literature, the
prn and the representation number for some specific classes of graphs were ob-
tained, in addition to some isolated examples. The classification for the class
of graphs with the prn at most three is an open problem. In this work, first
we reconcile the graphs of with the prn at most three. Further, we show that
the stacked book graphs have the prn as well as the representation number at
most three.
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We are interested in finding the graph of given size and order that contains
the most copies of a certain small graph as a subgraph. Precisely speaking,
for a simple graph H, let ex(n, e,H) denote the maximal number of copies
of (not necessarily induced) H subgraphs in a graph with n vertices and e
edges. There is no theorem telling us the exact value of ex(n, e,H) or even
an asymptotic bound for a general H, but the problem is settled for certain
specific graphs.
We will overview the theorem of Ahlswede and Katona about H = K1,2, its

generalization by Reiher and Wagner about anyH = K1,s and the speaker’s re-
sult concerning the case whenH is a 4-edge path. For these graphs, ex(n, e,H)
is asymptotically achieved by either a clique (if the edge density is high) or the
complement of a clique (if the edge density is low). We also discuss a theorem
of Alon that describes infinitely many graphs H for which the clique is always
the optimal construction.
Blekherman and Patel proved that for any graph H, ex(n, e,H) is asymp-

totically achieved by a threshold graph. Gerbner, Patkós, Vizer and the
speaker showed that for any H this extremal construction is the clique, pro-
vided that the edge density is above a threshold cH . We also investigate a
variant of these problems, when the host graph is bipartite.
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The b-chromatic number χb(G) of a graph G was introduced by Irving
and Manlove [2] in 1999 and is well investigated graph invariant by now.
Recently Anholcer et al. [1] in 2022 generalized it to the acyclic b-chromatic
number Ab(G) for acyclic colorings of G. We continue with generalization of
b-chromatic number to some special colorings, this time in particular to star
colorings and we introduce the star b-chromatic number Sb(G) of a graph G.
A star coloring of a graph G is a proper coloring where vertices of every two

color classes induce a forest of stars. A strict partial order is defined on the set
of all star colorings of G. We introduce, analogue to the b-chromatic number,
the star b-chromatic number Sb(G) as the maximum number of colors in a
minimum element of the mention order. We present several combinatorial
properties of Sb(G), compute the exact value for Sb(G) for several known
families and compare Sb(G) with several invariants naturally connected to
Sb(G).
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The talk addressees the problem of equitable coloring of weighted forests.
In general, an instance of Equitable Coloring consists of:

• a simple graph (V,E),

• a weight function w : V → N ,

• a number of colors m,

• and a question if there exists a coloring of the vertices f , such that for
any color c,

∑
v∈f−1(c)w(v) =

∑
v∈V w(v)/m.

One can consider 3 particular cases of the input data.

• When w ≡ 1 and the graph is a forest.

• When a graph has no edges and w is an arbitrary function.

• The case when w is an arbitrary function and the graph is a forest.

In the first case the problem is polynomial time. In the second case the
problem is NP-complete. However, there exists a polynomial time algorithm (a
PTAS, imprecisely speaking) computing an answer that either: there is no such
coloring; or that there is coloring f where for any color c,

∑
v∈f−1(c)w(v) ≤

(1 + ϵ)
∑

v∈V w(v)/m, where ϵ is any fixed number greater than 0.
The third case is addressed during the talk. Insights are provided, in

particular a classification of the vertices, which can be used to provide a PTAS
for Equitable Coloring with respect to weighted forests.
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One of the central topics in extremal graph theory, known as the Turán
problem, is to determine the maximum number of edges of a graph on n ver-
tices that does not contain a copy of a given graph F as a subgraph. Equiv-
alently, the minimum number of edges that forces the existence of F as a
subgraph.
In a rainbow version of this problem, for an integer c ≥ 1 we consider a

collection of c graphs G = (G1, . . . , Gc) on a common vertex set, thinking of
each graph as edges in a distinct color. We want to force the existence of a
rainbow copy of F in G by having a large number of edges in each graph.
In this talk we present a solution to the problem for directed graphs without

rainbow triangles and stars for any number of colors.
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Graphs have many applications in quantum information theory. These
range from theoretical frameworks for the study of the underlying physical
systems and properties to the logistics of building a functional quantum com-
munication network. In this talk we discuss several of these applications.
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Zero forcing is a propagation process on a graph. The propagation process
may be describe by the repeated application of the following colour change
rule: starting with an initial set of blue vertices, a blue vertex v can change
the colour of a neighbouring white vertex w to blue if w is the only white
neighbour of v. A zero forcing set of G is a subset S of vertices such that if S
is the initial set of blue vertices the whole graph will eventually be coloured
blue. The zero forcing number of a graph G, Z(G), is the minimum cardinality
of a zero forcing set.
We introduce the idea of Z-irredundance, which determines when a zero

forcing set is minimal. In this talk we will discuss the relationships between
zero forcing and Z-irredundance showcasing similarities and significant differ-
ences.

42
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Given a graph G, two edges e1, e2 ∈ E(G) are said to have a common edge
e if e joins an endvertex of e1 to an endvertex of e2. A subset B ⊆ E(G) is an
edge open packing (EOP) in G if no two edges of B have a common edge in G,
and the maximum cardinality of such a set in G is called the edge open packing
number, ρoe(G), of G. In this paper, we prove that the decision version of the
EOP number is NP-complete even when restricted to graphs with universal
vertices and Eulerian bipartite graphs, respectively. In contrast, we present a
linear-time algorithm that computes the parameter for trees. We also solve a
problem posed in an earlier paper on this topic. Notably, we characterize the
graphs G that attain the upper bound ρoe(G) ≤ |E(G)|/δ(G).
This problem was introduced in [3]. Note that the EOP sets are color

classes of the injective edge coloring of graphs ([2]) as well as a generalization
of induced matchings ([1, 4]).

1 Main results

We first discuss the following decision problem associated with the EOP num-
ber.

Edge open packing problem
Instance: A graph G and an integer k ≤ |E(G)|.
Question: Is ρoe(G) ≥ k?

(1)

We show that the problem (1) is NP-complete for some special families of
graphs.

Theorem 1 Edge Open Packing Problem is NP-complete even for graphs
with universal vertices.

Moreover, we prove that (1) is in some sense harder than Independent
Set Problem as it is known that the independence number of bipartite graphs
can be computed in polynomial time.
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Theorem 2 Edge Open Packing Problem is NP-complete even for Eu-
lerian bipartite graphs.

We prove that the EOP number and an optimal EOP set for any tree T can
be computed/constructed in linear time by exhibiting an efficient algorithm
for EOP in trees, in which the parameter can be computed in terms of four
auxiliary versions of the EOP number which are recursively defined based on
rooted trees.

Theorem 3 There exists a linear-time algorithm for computing the edge open
packing number of a tree.

We define the family F as follows. Let G be a bipartite graph of minimum
degree k ≥ 2 with partite sets A∪C and B such that every vertex in B has 1
and k − 1 neighbors in A and C, respectively.

Theorem 4 For any graph G of size m, ρoe(G) = m/δ(G) if and only if either
G is a disjoint union of stars or G ∈ F .
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Given a graph G and a set F of graphs, the F-isolation number is the
size of a smallest subset D of the vertex set of G such that G − N [D] (the
graph obtained from G by removing the closed neighbourhood of D) does
not contain a copy of a graph in F . The path isolation number ι(G,Pi) for
i > 0 has attracted particular interest among graph theorists. For i = 1, since
P1 = K1, we have Ore’s (1962) result [4] that γ(G) = ι(G,P1) ≤ n

2 where γ(G)
is the domination number of an n-vertex connected graph G. For i = 2, since
P2 = K2, we have Caro and Hansberg’s (2017) result [2] that ι(G,P2) ≤ n

3
provided G is connected but not a 5-cycle or a 2-clique. For i = 3, it was
shown by Zhang and Wu [5], and independently and in a stronger form by
Borg [1], that ι(G,P3) ≤ 2n

7 unless G ∈ {P3, C3, C6}. This can be improved
to n

4 if G is not a {P3, C7, C11}-graph and the girth is at least 7. Recently
Huang, Zhang and Jin [3] showed that for a connected graph G that has no
6-cycles or has no induced 5- and 6-cycles, then ι(G,P3) ≤ n

4 provided G is
not a {P3, C3, C7, C11}-graph. Joint work with Bartolo and Borg improved
this result for subcubic graphs. If G is subcubic and has no induced 6-cycles,
then ι(G,P3) ≤ n

4 provided G is not one of twelve specific graphs. The bound
is sharp.
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An vertex-colored path is vertex proper if it does not contain two adja-
cent vertices with the same color. An vertex-colored digraph D is properly
vertex connected if, between every ordered pair of vertices, there is a directed
proper path. A vertex-colored digraph D is strong properly vertex connected
if there exists a vertex proper geodesic between any ordered pair of vertices.
The smallest number of colors needed to make D (strong) properly vertex
connected is called the (strong) proper vertex connection number of D. The
proper vertex connection number and strong proper vertex connection number
of D is denoted by −→pvc(D) and −−→spvc(D), respectively.
It is known that the proper vertex connection number of any strong digraph

is at most 3 ([1]). However, the strong proper vertex connection number can
be arbitrarily large ([2]). In this talk, we will provide some properties of
the strong properly connected vertex-coloring. Additionally, we will present
upper bounds on the strong proper vertex connection number for some classes
of digraphs.
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Let X be a vertex subset of a graph G. Two vertices u, v ∈ V (G) are
X-positionable if V (P ) ∩ X ⊆ {u, v} holds for any shortest u,v-path P. If
every pair of vertices from X are X-positionable, then X is called a general
position set. The general position number of G is the cardinality of a largest
general position set of G, and this concept has been already well investigated.
In this talk, I will introduce varieties of general position problems based on
which natural pairs of vertices are required to be X-positionable. This yields
the definition of the total (resp. dual, outer) general position number. I will
demonstrate that the total general position sets coincide with sets of simplicial
vertices, and that the outer general position sets coincide with sets of mutually
maximally distant vertices. Additionally, I will show that a general position
set is a dual general position set if and only if its complement is convex. Fur-
thermore, I will present results on the total general position number, the outer
general position number, and the dual general position number for arbitrary
Cartesian products of graphs.
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For a simple finite graph G, let V (G) denote the set of vertices of G.We say
that a vertex u ∈ V (G) dominates a vertex v if u = v or v is adjacent to u. A
dominating set ofG, is a subset of vertices ofG which dominates all the vertices
of G. The domination number of G, denoted γ(G), is the size of a smallest
dominating set of G. The Cartesian product X□Y of two graphs X and Y is
the graph whose vertex set is V (X) × V (Y ) and edge set defined as follows.
Two vertices (x1, y1) and (x2, y2) are adjacent in X□Y if either x1 = x2 and
y1 and y2 are adjacent in Y, or y1 = y2 and x1 and x2 are adjacent in X. The
still open conjecture of Vizing, see [1], states that γ(X□Y ) ≥ γ(X)γ(Y ) for
any pair of graphs X and Y.
In 2000, Clark and Suen showed in [2] that γ(X□Y ) ≥ 1

2γ(X)γ(Y ) for any
pair of graphs X and Y. To this date, 12 remains the best obtained coefficient
towards proving Vizing’s conjecture. Clark and Suen’s result implies that
γ(X□Y□Z) ≥ 1

4γ(X)γ(Y )γ(Z) for any triple of graphs X, Y and Z. We
show that this lower bound can be improved for special graphs. In particular,
for any n ≥ 1, we show that γ(X□Y□Pn) ≥ cnγ(X)γ(Y )γ(Pn) where cn is
almost 3

4 when n is big enough. Our proof can be found in [3]. It uses space
projections and follows the new framework to approach Vizing’s conjecture
which appeared in [4].
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A k-edge coloring of a graph with colors in [k] is neighbor sum distinguish-
ing if, for any two adjacent vertices, the sums of the colors of the edges incident
with each of them are distinct. The smallest value of k such that a neigh-
bor sum distinguishing k-coloring of G exists is denoted by χe∑(G). When
we add the additional restriction that the edge k-coloring must be proper,
then the smallest value of k such that such a coloring exists is denoted by
χ′∑(G). The first type of coloring is related with the 1-2-3 Conjecture, which
was already proven by Keusch ([2]). The second type of coloring is related
with another conjecture proposed by Flandrin et al. ([1]), which states that
χ′∑(G) ≤ ∆(G) + 2 for any graph G with no components isomorphic to K2

and G ̸= C5. This conjecture remains open.
We consider an edge coloring that is on one hand stronger than the edge

coloring in the 1-2-3 Conjecture, and on the other hand weaker than the
coloring in conjecture proposed by Flandrin et al.. An edge k-coloring of
a graph G is called almost majority if for every vertex v ∈ V (G) and every
color α ∈ [k] at most ⌈d(v)/2⌉ edges incident to v have the color α. An edge
k-coloring of a graph G is called almost majority neighbor sum distinguishing
if it is almost majority and neighbor sum distinguishing. The minimum value
of k for which there exists such an edge k-coloring of a graph G is called
the almost majority neighbor sum distinguishing index of a graph G and is
denoted by χAM∑ (G). We study χAM∑ (G) for some classes of graphs.
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The concept of backbone coloring, a variant of the classic graph color-
ing problem, has garnered significant attention due to its theoretical appeal
and practical applications in areas such as frequency assignment, scheduling,
and network design. This talk will provide an overview of recent progress in
backbone coloring, highlighting key advancements and methodologies. Ad-
ditionally, the talk will address the most promising and stubborn remaining
open problems and challenges. In particular, we will focus on the coloring of
complete graphs with tree backbones and bounded-degree graphs with tree,
path, and matching backbones.

52



ROMAN DOMINATION ON FUZZY GRAPHS

Juan Carlos Valenzuela-Tripodoro

University of Cádiz (Spain)

e-mail: jcarlos.valenzuela@uca.es

Martin Cera, Pedro Garcia-Vázquez

University of Sevilla (Spain)

e-mail: mcera@us.es, pgvazquez@us.es

We make a contribution to the well-known problem of Roman domination
in graph theory as it relates to fuzzy graphs. Domination in fuzzy graphs
has been studied using a variety of approaches. By taking into account just
effective edges, Somasundaram and Somasundaram [1] examined domination
and total domination in fuzzy graphs. Domination in fuzzy graphs was intro-
duced by Nagoor Gani and Chandrasekaran [2] as the number of vertices in a
dominating set that makes use of strong edges. Based on the weight of strong
edges, Manjusha and Sunitha [4] determined the domination number of fuzzy
graphs. Moreover, they used this idea to examine a fuzzy graph’s strong node
covering number [5].
We will use the weights of strong edges to define the Roman domination

number for a fuzzy graph, based on the domination concept put forth by Man-
jusha and Sunitha. Cockayne et al. [3], who took their cue from a historical
defensive tactic ascribed to the reign of Emperor Constantine I The Great
(see [6]), are credited for establishing Roman dominance in graphs. This tac-
tic required that every weak point in the Roman Empire have a neighboring
fortress (having two legions) that could send a legion to defend it in case of
an unexpected attack. This guaranteed that the more powerful city would not
have to jeopardize its own security in order to send reinforcements to defend
the beleaguered area.
This paper presents the notions of strong-neighbors Roman domination

function/number of a fuzzy graph and shows how it relates to other well-
known domination parameters. For particular fuzzy graphs, we derive bounds,
find the strong-neighbors Roman domination number, and describe the fuzzy
graphs for which extreme values are obtained.
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A set of vertices D of a graph G is a distance 2-dominating set of G if
the distance between each vertex u ∈ (V (G)−D) and D is at most two. Let
γ2(G) denote the size of a smallest distance 2-dominating set of G.
For any permutation π of the vertex set of G, the prism of G with respect

to π is the graph πG obtained from two copies G1 and G2 of G by joining
u ∈ V (G1) and v ∈ V (G2) if and only if v = π(u). If γ2(πG) = γ2(G) for any
permutation π of V (G), then G is called a universal γ2−fixer. In this work we
study the property to be universal γ2-fixers for trees.
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