INTERVAL COLOURING THICKNESS VIA THE ERDŐS FAMILY OF GRAPHS

EWA DRGAS-BURCHARDT

University of Zielona Góra

e-mail: e.drgas-burchardt@im.uz.zgora.pl

Let $\theta_{int}(G)$ denote the minimum number of parts in a partition of the edge set of the graph G such that graphs induced by all the parts are interval colourable. Giving a finite projective plane $\pi(n)$ of order n with the sets W, L of points and lines, respectively, Erd(n) is known to be a graph with vertex set $W \cup L \cup \{u\}$ and edge set $\{wl : w \in W, l \in L \text{ and } w \text{ is incident to } l \} \cup \{ul : l \in L\}$. Next, if $L = \{l_1, \ldots, l_{n^2+n+1}\}$ and a sequence r_1, \ldots, r_{n^2+n+1} of positive integers is given, by $Erd(r_1, \ldots, r_{n^2+n+1})$ we mean a graph resulting from Erd(n) by a multiplication of the vertex l_i with r_i vertices made for all $i \in [n^2+n+1]$. Graphs $Erd(r_1, \ldots, r_{n^2+n+1})$ constructed for all possible finite projective planes and all possible parameters r_1, \ldots, r_{n^2+n+1} form the Erdős family of graphs.

Let l be a fixed line of a finite projective plane $\pi(n)$ and w_1, \ldots, w_{n+1} be all points incident to l. Next let for $i \in [n+1]$, a set L_i consist of all lines incident to w_i that are different from l. We prove that if an ordering l_1, \ldots, l_{n^2+n+1} of the set L is given and positive integers r_1, \ldots, r_{n^2+n+1} are such that at least t different indices i from [n+1] satisfy $r_k = r_j$ if $l_k, l_j \in L_i$, then

$$\theta_{int}(Erd(r_1,\ldots,r_{n^2+n+1})) \le \max\left\{2, \left\lceil \frac{n+2-t}{2} \right\rceil\right\}.$$

Consequently, a tight upper bound of $\left\lceil \frac{n+2}{2} \right\rceil$ on $\theta_{int}(Erd(r_1, \ldots, r_{n^2+n+1}))$ is valid in the whole Erdős family of graphs.

References

- A.S. Asratian, C.J. Casselgren, P.A. Petrosyan, Decomposing graphs into interval colorable subgraphs and no-wait multi-stage schedules, Discrete Appl. Math. 335 (2023) 25–35, doi:10.1016/j.dam.2022.07.015.
- [2] A.A. Albert, R. Sandler (1968), An Introduction to Finite Projective Planes, New York: Holt, Rinehart and Winston.