ISOLATION OF GRAPHS

Peter Borg
University of Malta
e-mail: peter.borg@um.edu.mt

Given a set \mathcal{F} of graphs, we call a copy of a graph in \mathcal{F} an \mathcal{F}-graph. The \mathcal{F}-isolation number of a graph G, denoted by $\iota(G, \mathcal{F})$, is the size of a smallest subset D of the vertex set $V(G)$ such that the closed neighbourhood $N[D]$ of D intersects the vertex sets of the \mathcal{F}-graphs contained by G (equivalently, $G-N[D]$ contains no \mathcal{F}-graph). When \mathcal{F} consists of a 1 -clique, $\iota(G, \mathcal{F})$ is the domination number of G. When \mathcal{F} consists of a 2-clique, $\iota(G, \mathcal{F})$ is the vertex-edge domination number of G. The general \mathcal{F}-isolation problem was introduced by Caro and Hansberg [10] in 2017. They established many results on \mathcal{F}-isolation numbers and posed several problems. Solutions will be presented together with most of the isolation results to date.

References

[1] P. Borg, Isolation of cycles, Graphs and Combinatorics 36 (2020), 631637.
[2] P. Borg, K. Fenech and P. Kaemawichanurat, Isolation of k-cliques, Discrete Mathematics 343 (2020), paper 111879.
[3] P. Borg, K. Fenech and P. Kaemawichanurat, Isolation of k-cliques II, Discrete Mathematics 345 (2022), paper 112641.
[4] P. Borg and P. Kaemawichanurat, Extensions of the Art Gallery Theorem, Annals of Combinatorics 27 (2023), 31-50.
[5] P. Borg, Isolation of connected graphs, Discrete Applied Mathematics 339 (2023), 154-165.
[6] P. Borg, Isolation of regular graphs, stars and k-chromatic graphs, arXiv:2303.13709 [math.CO].
[7] P. Borg, Isolation of regular graphs and k-chromatic graphs, arXiv:2304.10659 [math.CO].
[8] P. Borg, K. Bartolo and D. Scicluna, Isolation of squares in graphs, arXiv:2310.09128 [math.CO].
[9] G. Boyer and W. Goddard, Disjoint isolating sets and graphs with maximum isolation number, arXiv:2401.03933 [math.CO].
[10] Y. Caro and A. Hansberg, Partial domination - the isolation number of a graph, FiloMath 31:12 (2017), 3925-3944.
[11] M. Lemańska, M. Mora and M.J. Souto-Salorio, Graphs with isolation number equal to one third of the order, Discrete Mathematics 347 (2024), paper 113903.
[12] G. Zhang and B. Wu, $K_{1,2}$-isolation in graphs, Discrete Applied Mathematics 304 (2021), 365-374.
[13] P. Żyliński, Vertex-edge domination in graphs, Aequationes Mathematicae 93 (2019), 735-742.

